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Task: extracting text spans from an untagged corpus
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Set Expansion

C € {drug-trt ; sosy-dis ; findings ; tests ; behavior ; legal-reg }
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OKgraph

relation_expansion
relation_labeling
set labeling

set_expansion
o Scored tree expansion
o k-nearest neighbours
o k-nearest neighbours with centroid boost
m Vector representation of words
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Class decomposition

e drug-trt
o drugs : {improvac ; pemetrexed lilly ; protopic }
e sosy-dis

o signs or symptoms : { breathing difficulty ; disorientation ; blindness }
o diseases : { tardive dyskinesia ; diabetes mellitus ; cardiomyopathy }
e tests: {screening ; ct scan ; mammography }

Findings and behavior ignored, treatments and legal-reg dismissed after first tests

5/14



Pipeline: training

[+ ]—

Training

[+ ]—

) Wikipedia

[+ ]—

Test

et

m O T

ODZ—0umOOXVT

OKGraph

- Gensim
<—|
# word2vec
model

6/14



Pipeline: k-nearest neighbours (k=200)
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Three runs / Two Languages

English Italian
1. Model trained with the training corpus
2. Training + 1GB from Wikipedia dump 1. Training + 1GB from Wikipedia dump

3. Training + Wiki + test corpus 2. Training + Wiki + test corpus
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Three runs (continued)
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Scores

170 predictions

Precision .004 for class sosy
Precision .105 for class tests
Precision .000 everywhere else

8 to 9 total predictions
Precision .001 for class sosy - 2
Precision .000 everywhere else

Run 1

Run 2

Run 2

Run 3

Run 3

3657-ab.ann

3706-aa.ann *

3708-aa.ann

3657-ab.ann

3706-aa.ann *

Rover
sosy-dis
test
sosy-dis
sosy-dis

test

Mood swings
clinical examination
Breathing Difficulties

Mood swings

clinical examination

* One occurrence in ROVER, two in our submission

Run 2

3708-aa.ann

Gold Standard

sosy-dis

Breathing Difficulties
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Index lookup limit

Indexing was performed via an external library (Whoosh)

e\/alues for precision
eEvaluated on the gold standard

([
e Default behaviour limits the number of retrieved matches
Run | Predictions sosy tests | overall
(n=1173) | (46)
1 49 2632 | .0333 | .1224
2 71 2400 | .0217 @ .0986
3 63 2174 | .0250 @ .0952

* Code and data in repo are still at “buggy” version
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Better seed sets

e The entities in the seed sets are representative of the six categories, but not
strictly related to Covid-19
e Post-evaluation experiments with 21 different seeds (run 3, category sosy-dis)

e One tailored seed set for diseases: { sars ; coronavirus ; pneumonia }
e 20 random sets from its expansion

e Tailored set achieved the best recall and F-score (+1~2 orders of magnitude!)
e Random sets very similar in terms of F-score (62=0.0004 vs ¢2=0.0089)

12/14



Tuning k-nearest neighbour

For our submission, the k parameter has been arbitrarily set to 200

We performed some post-evaluation experiments, with the same setting from

run #3, restricted to class diseases, with the tailored seed set

k Annotations | Precision | Recall | F-score
20 306 .8105 2166 3418
175 668 4895 2769 .3537
200 675 4844 2769 3524
500 729 4540 .2798 .3462
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Conclusions and Next Steps

Our submission performed poorly wrt both the rover and the gold standard
Correction of an ill-valued parameter improved the result...

... But not for all classes!

Selecting a tailored seed set is crucial for recall, but we don’t have a method
for automating its selection yet

e Tuning of the k parameter for nearest neighbour, so to find a balance between
precision and recall, should be taken into consideration

Results suggest that Set Expansion, in the context of an Information Extraction
task, tends to produce higher-Precision and lower-Recall results.
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