

UNIPD IMS group: COVID19-MLIA@Eval

Giorgio Maria Di Nunzio, Dennis Dosso, Alessandro Fabris, Guglielmo Faggioli, Nicola Ferro, Fabio Giachelle, Ornella Irrera, Stefano Marchesin, Luca Piazzon, **Alberto Purpura**, Gianmaria Silvello, Federica Vezzani

Multilingual Semantic Search (Task 2)

Goal:

 collect relevant information for the community, the general public as well as other stakeholders, when searching for health content in different languages and with different levels of knowledge about a specific topic.

Subtasks:

- Subtask1: high precision
- Subtask2: high recall

• L
Retrieval

Lexical

Neural

Rank Fusion

CombSUM

Preprocessing

Query Reformulation (DE, EN, FR, IT)

- We collaborated with the students of the course Computer Assisted Translation Tools of the Master Degree in Modern Languages for International Communication and Cooperation of the University of Padua;
- We first asked the students to provide a few terminological variations to groups of one or more medical terms in each topic keywords field;
- We then automatically generated the query variations by replacing all combinations of these terms in the topic keyword field.

Language	# of reformulations
English	1,139
French	225
German	414
Italian	1,632
Spanish	554

• We performed document retrieval using all the combinations of the following stoplists, stemmers and retrieval models for each language:

Lang.	Stoplists	Stemmers	Ranking Fun.	GoP size	
de	bbalet*, ranksnl*, gh*,	nostem, german,		75	
ue	lucene, nostop	germanLight		10	
el	nostop, bbalet*, ranksnl*,	nostem, greek	bm25	50	
GI.	gh*, lucene	nostem, greek	tf-idf	50	
on	nostop, lucene, indri [†] ,	nostom portor loving	lmd	75	
en	$atire^{\dagger}$, $okapi^{\dagger}$	nostem, porter, lovins	lmjm	75	
0.7	nostop, bbalet*, ranksnl*,	nostem, spanishLight,	dfrinexpb2	75	
es	gh*, lucene	snowball		75	
fr	nostop, bbalet*, ranksnl*,	nostem, frenchLight,		75	
П	gh*, lucene	snowball		7 9	
it	nostop, bbalet*, ranksnl*,	nostem, italianLight,		75	
	gh*, lucene	snowball		10	
sv	nostop, fergiemcdowall*,	nostem, swedishLight,		75	
	bbalet*, gh*, lucene	snowball		19	
uk	nostop, ukrainianHeavy*,	nogtom		20	
	ranksnl*, ukStandard*	nostem		20	

Table 1: Stoplists marked with * are taken from stopwords-iso. Stoplists marked with † are the default stoplists in other search engines. The remaining components are available in Lucene after minor or no adaptation.

- We also reranked the top 500 documents of each topic of a run computed with Anserini BM25 (using the default stemmer and stoplist options) using the SLEDGE¹ framework, a recent neural approach for reranking relying on SciBERT.
- We used two different pre-trained models available online, one trained on the MS-MARCO dataset and the other trained on only the subset of medical documents in it¹.

¹ The models are described and downloadable from://github.com/Georgetown-IR-Lab/covid-neural-ir.

Table 1: AP	achieved in	our submitted	runs for	different	languages.
		our pasififoud		CHILCH CHIC	

Lang	c- $bm25$	v-csum	csum	bm25	nsle	nlex
$\overline{\mathbf{DE}}$	0.289	0.345	0.307	0.287	-	_
${f EL}$	0.555	-	0.476	0.455	-	_
${f EN}$	0.277	0.300	_	0.227	0.159	0.306
\mathbf{ES}	0.165	0.170	0.172	0.146	_	-
\mathbf{FR}	0.312	0.339	0.313	0.282	_	_
\mathbf{IT}	0.196	0.286	0.220	0.183	_	_
\mathbf{SV}	0.504	-	0.460	0.418	_	_

- bm25: BM25 with default Lucene parameters (keyword only formulation of each topic);
- c-bm25: same as above, with queries combining both keyword and conversational formulations of topics;
- csum: one-stage fusion of all the lexical runs, using only the keyword-only formulation of a query;
- v-csum: two-stage fusion, using all the available topic formulations and lexical runs (DE, EN, ES, FR, IT only);
- nlex: three-stage fusion, using all the available topic formulations, lexicalruns and neural runs (EN only);
- nsle: the output of sledge-med (EN only).

Crowdsourcing Relevance Judgements

Mv pool Official	-		NR	
R	Strong	Weak	Strong	
	agreement	disagreement	disagreement	
PR	Weak	Strong	Weak	
	disagreement	agreement	disagreement	
NR	Strong	Weak	Strong	
	disagreement	disagreement	agreement	

Table 1: Majority Vote pools agreement with Official pools, for the 5 available languages.

	German	${\bf English}$	$\mathbf{Spanish}$	French	${\bf Italian}$
Strong Agreement	0.5750	0.5965	0.5861	0.6102	0.4989
Weak Agreement	0.1783	0.1788	0.2129	0.2028	0.1387
Weak Disagreement	0.1590	0.0859	0.1406	0.1083	0.1968
Strong Disagreement	0.0877	0.1388	0.0604	0.0787	0.1656

- When no relevance judgements are available, BM25 is the most reliable solution as a single system
- Rank fusion of multiple lexical models can give a cheap and consistent performance boost across multiple languages
- When possible, relying on human annotators or on an ontology to perform query reformulation can further boost performance in a noticeable and reliable way
- Neural models alone, even when trained on a same-domain corpus cannot achieve competitive performances but become very useful when combined through rank fusion techniques to lexical models

Thank you!

Questions?