Multistage BiCross Encoder: Team GATE Entry for MLIA Multilingual Semantic Search Task 2

Iknoor Singh, Carolina Scarton and Kalina Bontcheva The University of Sheffield, UK

- 1. Introduction
- 2. Problem Statement
- 3. Proposed Approach
- 4. Evaluation and Results
- 5. Conclusion

1. Introduction

Ref. WHO Infodemiology Conference

- Coronavirus (COVID-19) pandemic has led to a rapidly growing 'infodemic' online.
- Researchers and journalists have been publishing a lot of content related to health, COVID-19 prevention methods, new laws and guidelines etc and this information comes from different parts of the world in multiple languages
- Accurate retrieval of reliable relevant data from millions of documents about COVID-19 has become urgently needed for the general public as well as for other stakeholders.

2. Problem Statement

How to build effective semantic search systems?

• Accurate retrieval of reliable relevant data

Ref. NIST Text Retrieval Conference (TREC) logo

2. Problem Statement

How to build effective semantic search systems?

- Accurate retrieval of reliable relevant data
- Fast retrieval from millions of docs

Ref. NIST Text Retrieval Conference (TREC) logo

2. Problem Statement

How to build effective semantic search systems?

- Accurate retrieval of reliable relevant data
- Fast retrieval from millions of docs
- Support for multilingual search

Ref. NIST Text Retrieval Conference (TREC) logo

3. Multistage BiCross Encoder

The WeVerify and SoBigData++ projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 825297 and 871042

• Elasticsearch was used for initial retrieval using BM25 Okapi algorithm. It reduce the search space from a large number of documents (e.g. 1.4M in case of English documents) to a small set of possibly relevant documents.

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020) Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docttttquery. Online preprint (2019)

- Elasticsearch was used for initial retrieval using BM25 Okapi algorithm. It reduce the search space from a large number of documents (e.g. 1.4M in case of English documents) to a small set of possibly relevant documents.
- Only considered text inside the tags and have excluded all the boilerplate tags. Text pre-processing methods such as stopwords removal and lemmatisation have been used before indexing the documents.

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020) Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docttttquery. Online preprint (2019)

- Elasticsearch was used for initial retrieval using BM25 Okapi algorithm. It reduce the search space from a large number of documents (e.g. 1.4M in case of English documents) to a small set of possibly relevant documents.
- Only considered text inside the tags and have excluded all the boilerplate tags. Text pre-processing methods such as stopwords removal and lemmatisation have been used before indexing the documents.
- Three types of query tried in our experiments,
 - 1. Concatenatenated keyword and conversational field

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020) Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docttttquery. Online preprint (2019)

- Elasticsearch was used for initial retrieval using BM25 Okapi algorithm. It reduce the search space from a large number of documents (e.g. 1.4M in case of English documents) to a small set of possibly relevant documents.
- Only considered text inside the tags and have excluded all the boilerplate tags. Text pre-processing methods such as stopwords removal and lemmatisation have been used before indexing the documents.
- Three types of query tried in our experiments,
 - Concatenatenated keyword and conversational field
 Udels Query from TREC-COVID (Zhang et al. 2020)

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020) Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docttttquery. Online preprint (2019)

- Elasticsearch was used for initial retrieval using BM25 Okapi algorithm. It reduce the search space from a large number of documents (e.g. 1.4M in case of English documents) to a small set of possibly relevant documents.
- Only considered text inside the tags and have excluded all the boilerplate tags. Text pre-processing methods such as stopwords removal and lemmatisation have been used before indexing the documents.
- Three types of query tried in our experiments,
 - Concatenatenated keyword and conversational field
 Udels Query from TREC-COVID (Zhang et al. 2020)
 T5 query using doc2query model (Nogueira et al. 2019)

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020) Nogueira, R., Lin, J., Epistemic, A.: From doc2query to docttttquery. Online preprint (2019)

 In this phase, bi-encoder is used to encode both query and document individually into contextualised representations. In the same vector space, query and relevant document lie in proximity of each other and can be efficiently retrieved using cosine similarity.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019) TC+IFCN is a combined version of TREC-COVID data and IFCN COVID-19 debunk dataset. Cross_TC+IFCN is the translated version of TC+IFCN data.

- In this phase, bi-encoder is used to encode both query and document individually into contextualised representations. In the same vector space, query and relevant document lie in proximity of each other and can be efficiently retrieved using cosine similarity.
- For training bi-encoder, TC+IFCN data was used to finetune transformer-based models using Siamese network architecture to get semantically meaningful sentence representations (Reimers et al. 2019). As the representations are separate, bi-encoder can store and reuse the encoded representation of inputs for faster predictions during inference.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019) TC+IFCN is a combined version of TREC-COVID data and IFCN COVID-19 debunk dataset. Cross_TC+IFCN is the translated version of TC+IFCN data.

- In this phase, bi-encoder is used to encode both query and document individually into contextualised representations. In the same vector space, query and relevant document lie in proximity of each other and can be efficiently retrieved using cosine similarity.
- For training bi-encoder, TC+IFCN data was used to finetune transformer-based models using Siamese network architecture to get semantically meaningful sentence representations (Reimers et al. 2019). As the representations are separate, bi-encoder can store and reuse the encoded representation of inputs for faster predictions during inference.
- Used sentence-level evidence where relevance score of each document is determined by combining the top k scoring sentences in the document (Yang et al. 2019)

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019) TC+IFCN is a combined version of TREC-COVID data and IFCN COVID-19 debunk dataset. Cross_TC+IFCN is the translated version of TC+IFCN data.

- In this phase, bi-encoder is used to encode both query and document individually into contextualised representations. In the same vector space, query and relevant document lie in proximity of each other and can be efficiently retrieved using cosine similarity.
- For training bi-encoder, TC+IFCN data was used to finetune transformer-based models using Siamese network architecture to get semantically meaningful sentence representations (Reimers et al. 2019). As the representations are separate, bi-encoder can store and reuse the encoded representation of inputs for faster predictions during inference.
- Used sentence-level evidence where relevance score of each document is determined by combining the top k scoring sentences in the document (Yang et al. 2019)
- This stage will filter out all the semantically unrelated documents from BM25 retrieved documents.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019) TC+IFCN is a combined version of TREC-COVID data and IFCN COVID-19 debunk dataset. Cross_TC+IFCN is the translated version of TC+IFCN data.

3.2 Neural Re-ranking Phase

• Transformer-based cross-encoder is used performs full self-attention over query and document pair to get the relevance score which is used to rank the final list documents with respect to the query

3.2 Neural Re-ranking Phase

- Transformer-based cross-encoder is used performs full self-attention over query and document pair to get the relevance score which is used to rank the final list documents with respect to the query
- In this, both query tokens and the document tokens separated by [SEP] token are passed to the model and the output of [CLS] token is passed to the linear layer with sigmoid activation to get relevance scores from 0 to 1 as illustrated.

3.2 Neural Re-ranking Phase

- Transformer-based cross-encoder is used performs full self-attention over query and document pair to get the relevance score which is used to rank the final list documents with respect to the query
- In this, both query tokens and the document tokens separated by [SEP] token are passed to the model and the output of [CLS] token is passed to the linear layer with sigmoid activation to get relevance scores from 0 to 1 as illustrated.
- Directly used the output of cross-encoder but for some runs, we also combined scores from previous stages using various fusion algorithms including score-based and rank-based fusion algorithms.

The WeVerify and SoBigData++ projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 825297 and 871042

Evaluation and Results

Run ID	P@5	P@10	MAP	NDCG@10	NDCG	Rprec	Recall	Run ID	P@5	P@10	MAP	NDCG@10	NDCG	Rprec	Recall
gatenlp_run5	0.9333	0.9000	0.2944	0.8331	0.5187	0.3486	0.4382	gatenlp_run37	0.8333	0.7933	0.2043	0.7263	0.3705	0.2806	0.3086
gatenlp_run3	0.9200	0.8900	0.2912	0.8223	0.5155	0.3484	0.4375	gatenlp_run25	0.8133	0.7767	0.2154	0.7455	0.3808	0.2795	0.3111
gatenlp_run2	0.9000	0.7967	0.2560	0.7775	0.4925	0.3215	0.4278	gatenlp_run28	0.8067	0.7767	0.2113	0.7478	0.3768	0.2758	0.3086
gatenlp_run1	0.8867	0.8633	0.2776	0.8139	0.5067	0.3310	0.4411	gatenlp_run34	0.7933	0.7833	0.2173	0.7383	0.3769	0.2858	0.3086
gatenlp_run7	0.8667	0.8800	0.2719	0.8212	0.5014	0.3305	0.4292	gatenlp_run31	0.7933	0.7867	0.2246	0.7362	0.3790	0.2873	0.3086
CUNIMTIR_Run1	0.5933	0.4800	0.1145	0.4254	0.2802	0.1976	0.2613	sinai_sinai1	0.5200	0.4867	0.0900	0.4629	0.2177	0.1557	0.1767
CUNIMTIR_Run3	0.3600	0.3233	0.0609	0.2712	0.1444	0.1046	0.1278	sinai_sinai2	0.4400	0.4067	0.0631	0.3868	0.1835	0.1284	0.1537
CUNIMTIR_Run4	0.3533	0.3267	0.0530	0.2688	0.1422	0.0940	0.1239	sinai_sinai4	0.3600	0.3067	0.0535	0.2904	0.1738	0.1243	0.1594
ims_bm25_1k	0.3067	0.2433	0.0688	0.2391	0.2418	0.1579	0.2595	sinai_sinai3	0.2267	0.1733	0.0284	0.1820	0.1121	0.0786	0.1011
ims_bm25_2k	0.2400	0.1833	0.0478	0.1744	0.1789	0.1277	0.2028	sinai_sinai5	0.2267	0.1733	0.0155	0.1832	0.0634	0.0407	0.0444
ims_bm25_3k	0.2067	0.1633	0.0396	0.1413	0.1582	0.1075	0.1930	ims_bm25_1k	0.2067	0.1867	0.0577	0.1812	0.1944	0.1366	0.2142
ims_bm25_4k	0.1933	0.1533	0.0367	0.1546	0.1483	0.1037	0.1677	ims_bm25_2k	0.2000	0.1800	0.0591	0.1745	0.2003	0.1402	0.2275
gatenlp_run10	0.9200	0.8767	0.3427	0.8108	0.6255	0.3711	0.6334	ims_bm25_3k	0.1733	0.1433	0.0444	0.1359	0.1744	0.1196	0.2072
ims_nlex	0.8933	0.9000	0.3055	0.8365	0.5740	0.3408	0.5593	ims_bm25_4k	0.0867	0.0800	0.0309	0.0793	0.1535	0.1046	0.1900
gatenlp_run8	0.8867	0.8533	0.2999	0.8126	0.6092	0.3295	0.6334	·	0 7000	0.0000	0.1054	0.0940	0.9009	0.0004	0.4004
ims_c-bm25	0.8600	0.8267	0.2771	0.7592	0.5945	0.3089	0.6482	ims_c-bm25	0.7000	0.6933	0.1654	0.6346	0.3993	0.2224	0.4084
ims_v-csum	0.8533	0.8233	0.2999	0.7693	0.6092	0.3450	0.6516	ims_v-csum	0.6867	0.7133	0.1697	0.6604	0.3797	0.2171	0.3612
ims_bm25	0.7200	0.6900	0.2269	0.6202	0.5264	0.2673	0.6079	ims_csum	0.6800	0.6200	0.1720	0.5822	0.3769	0.2259	0.3779
CUNIMTIR_Run5	0.6867	0.6900	0.1908	0.5780	0.4574	0.2364	0.5160	ims_bm25	0.6133	0.5800	0.1458	0.5263	0.3540	0.2020	0.3740
CUNIMTIR_Run1	0.6800	0.5033	0.1659	0.4928	0.4450	0.2223	0.5148	sinai_sinai1	0.5200	0.4867	0.1000	0.4629	0.2839	0.1560	0.2928
ims_nsle	0.5067	0.5133	0.1595	0.4084	0.4145	0.2205	0.4837	sinai_sinai2	0.4400	0.4067	0.0715	0.3868	0.2436	0.1285	0.2618
CUNIMTIR_Run3	0.4800	0.3367	0.0882	0.2944	0.2500	0.1221	0.2986	sinai_sinai4	0.3600	0.3067	0.0626	0.2904	0.2368	0.1247	0.2689
CUNIMTIR_Run2	0.4667	0.3033	0.0646	0.3005	0.2379	0.1163	0.2683	sinai_sinai5	0.2267	0.1733	0.0157	0.1832	0.0693	0.0408	0.0550
CUNIMTIR_Run4	0.4267	0.3400	0.0658	0.2809	0.2200	0.1051	0.2662	sinai_sinai3	0.2267	0.1733	0.0342	0.1820	0.1644	0.0788	0.1906

Table 1. Performance of different monolingual English runs. Best results are bolded. Table 2. Performance of different monolingual Spanish runs. Best results are bolded.

Run ID	P@5	P@10	MAP	NDCG@10	NDCG	Rprec	Recall
gatenlp_run26	0.8800	0.7533	0.3505	0.7490	0.5672	0.3773	0.5267
$gatenlp_run29$	0.8600	0.7400	0.3302	0.7324	0.5406	0.3651	0.4926
$gatenlp_run32$	0.8133	0.7367	0.3161	0.7180	0.5297	0.3593	0.4926
gatenlp_run35	0.8133	0.7267	0.3125	0.7116	0.5268	0.3541	0.4926
$gatenlp_run38$	0.7867	0.6400	0.2752	0.6436	0.5030	0.3269	0.4926

 Table 3. Performance of different monolingual French runs. Best results are bolded.

Run ID	P@5	P@10	MAP	NDCG@10	NDCG	Rprec	Recall
gatenlp_run30	0.9067	0.8767	0.4537	0.8234	0.6403	0.4794	0.6253
gatenlp_run27	0.9000	0.8667	0.4629	0.8211	0.6488	0.4858	0.6339
gatenlp_run36	0.8733	0.8267	0.4442	0.7772	0.6377	0.4843	0.6253
gatenlp_run33	0.8733	0.8300	0.4531	0.7793	0.6399	0.4972	0.6253
gatenlp_run39	0.7733	0.7700	0.4227	0.7078	0.6200	0.4601	0.6253
ims_bm25_1k	0.1667	0.1633	0.0700	0.1475	0.2288	0.1413	0.3063
ims_bm25_2k	0.1667	0.1600	0.0793	0.1515	0.2176	0.1388	0.2769
ims_bm25_4k	0.1467	0.1433	0.0629	0.1396	0.1967	0.1120	0.2589
ims_bm25_3k	0.1400	0.1367	0.0650	0.1276	0.1924	0.1163	0.2488
ims_v-csum	0.7267	0.6733	0.3447	0.6341	0.6174	0.3737	0.7080
ims_csum	0.6267	0.5700	0.3072	0.5315	0.5731	0.3507	0.6940
ims_c-bm25	0.6133	0.5633	0.2890	0.5150	0.5667	0.3131	0.7114
ims_bm25	0.5933	0.5333	0.2869	0.4912	0.5572	0.3173	0.6924

Run ID	P@5	P@10	MAP	NDCG@10	NDCG	Rprec	Recall	
gatenlp_en2es_run49	0.8533	0.7367	0.1579	0.7042	0.3214	0.2273	0.2565	
$gatenlp_en2es_run52$	0.8200	0.7700	0.1666	0.7368	0.3287	0.2286	0.2565	
$gatenlp_en2es_run40$	0.8067	0.7733	0.1740	0.7211	0.3277	0.2380	0.2565	
$gatenlp_en2es_run43$	0.8000	0.6867	0.1538	0.6555	0.3155	0.2287	0.2565	
$gatenlp_en2es_run46$	0.7733	0.6367	0.1439	0.6330	0.3120	0.2231	0.2565	
gatenlp_en2fr_run53	0.8400	0.7467	0.2870	0.7245	0.4993	0.3220	0.4452	
gatenlp_en2fr_run41	0.8267	0.7033	0.2811	0.6980	0.4966	0.3294	0.4452	
$gatenlp_en2fr_run44$	0.7667	0.6667	0.2527	0.6622	0.4801	0.3107	0.4452	
$gatenlp_en2fr_run47$	0.7400	0.6300	0.2378	0.6234	0.4633	0.2980	0.4360	
$gatenlp_en2fr_run50$	0.7133	0.6700	0.2506	0.6521	0.4712	0.3054	0.4360	
gatenlp_en2de_run42	0.8000	0.7600	0.2776	0.7300	0.4546	0.3307	0.3950	
$gatenlp_en2de_run54$	0.7733	0.7267	0.2680	0.7007	0.4484	0.3221	0.3950	
$gatenlp_en2de_run51$	0.7200	0.6867	0.2475	0.6568	0.4334	0.3029	0.3907	
$gatenlp_en2de_run45$	0.7133	0.6700	0.2474	0.6444	0.4349	0.3076	0.3950	
$gatenlp_en2de_run48$	0.6867	0.6433	0.2292	0.6099	0.4187	0.2978	0.3907	
ble 5. Performance	ble 5. Performance of different bilingual Spanish (en2es), French (en2fr) and Ger-							

Table 4. Performance of different monolingual German runs. Best results are bolded.

man (en2de) runs. Best results are bolded.

Conclusion

- 1. We found Multistage BiCross Encoder to be highly effective at achieving state-of-the art performance on a wide range of metrics, including precision (P@10 & P@10) and NDCG at top ranks, R-precision, mean average precision and high recall for all the retrieved documents. Also, fine-tuning bi-encoder and cross-encoder model on TC+IFCN (or Cross_TC+IFCN) data proved to be beneficial and helped in achieving the highest scores.
- 2. For monolingual English runs, fine-tuning the bi-encoder model trained STS data gave the highest scores. For monolingual runs other than English, where we used multilingual models, the scores of German runs are comparatively higher, followed by French and Spanish runs respectively.
- 3. Overall, we find that runs which use key_conv as query perform better than Udels query and t5 query. Apart from this, we couldn't find any single model which perform good for all the languages as different models and methods give distinct results for different metrics.

The WeVerify and SoBigData++ projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 825297 and 871042

Conclusion

- 1. We found Multistage BiCross Encoder to be highly effective at achieving state-of-the art performance on a wide range of metrics, including precision (P@10 & P@10) and NDCG at top ranks, R-precision, mean average precision and high recall for all the retrieved documents. Also, fine-tuning bi-encoder and cross-encoder model on TC+IFCN (or Cross_TC+IFCN) data proved to be beneficial and helped in achieving the highest scores.
- 2. For monolingual English runs, fine-tuning the bi-encoder model trained STS data gave the highest scores. For monolingual runs other than English, where we used multilingual models, the scores of German runs are comparatively higher, followed by French and Spanish runs respectively.
- 3. Overall, we find that runs which use key_conv as query perform better than Udels query and t5 query. Apart from this, we couldn't find any single model which perform good for all the languages as different models and methods give distinct results for different metrics.

For future rounds, we plan to make further improvements to our approach, as well as extensively explore BiCross encoder for document retrieval for future research.

Thanks

Arxiv Preprint: https://arxiv.org/abs/2101.03013

The WeVerify and SoBigData++ projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 825297 and 871042

References

Zhang, E., et al.: Covidex: Neural ranking models and keyword search infrastructure for the covid-19 open research dataset. arXiv preprint arXiv:2007.07846 (2020)

Nogueira, R., Lin, J., Epistemic, A.: From doc2query to doctttttquery. Online preprint (2019)

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bertnetworks. arXiv preprint arXiv:1908.10084.

Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019)